- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0005000001000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Schramm, Tselil (6)
-
O'Donnell, Ryan (3)
-
Deshpande, Yash (1)
-
Kothari, Pravesh K. (1)
-
Li, Shuangping (1)
-
Liu, Siqi (1)
-
Mohanty, Sidhanth (1)
-
Montanari, Andrea (1)
-
Rubinstein, Aviad (1)
-
Sen, Subhabrata (1)
-
Weinberg, S. Matthew (1)
-
Yang, Elizabeth (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liu, Siqi; Mohanty, Sidhanth; Schramm, Tselil; Yang, Elizabeth (, ACM)
-
O'Donnell, Ryan; Schramm, Tselil (, Computational Complexity Conference)
-
Kothari, Pravesh K.; O'Donnell, Ryan; Schramm, Tselil (, Leibniz international proceedings in informatics)
-
Deshpande, Yash; Montanari, Andrea; O'Donnell, Ryan; Schramm, Tselil; Sen, Subhabrata (, Proceedings of the annual ACM-SIAM Symposium on Discrete Algorithms)
-
Rubinstein, Aviad; Schramm, Tselil; Weinberg, S. Matthew (, Innovations in Theoretical Computer Science)We give query-efficient algorithms for the global min-cut and the s-t cut problem in unweighted, undirected graphs. Our oracle model is inspired by the submodular function minimization problem: on query $$S \subset V$$, the oracle returns the size of the cut between $$S$$ and $$V \setminus S$$. We provide algorithms computing an exact minimum $$s$$-$$t$$ cut in $$G$$ with $$\tilde{O}(n^{5/3})$$ queries, and computing an exact global minimum cut of $$G$$ with only $$\tilde{O}(n)$$ queries (while learning the graph requires $$\tilde{\Theta}(n^2)$$ queries).more » « less
An official website of the United States government

Full Text Available